INFRARED AND THERMAL STUDY OF 5,6-BENZOQUINOLINE COMPLEXES OF SOME HIGHER VALENT METAL IONS

R.K. AGARWAL *, SC. RASTOGI and PRAVESH KUMAR

Department of Chemistry, Lajpat Rai Post Graduate College, Sahibabad 201 005 (India) (Received 27 June 1985)

ABSTRACT

The synthesis and physical properties of crystalline ZrO^{2+} , Th⁴⁺ and UO_2^{2+} complexes of 5,6-benzoquinoline (Benzqn), ThX₄.4Benzqn (X = Cl, Br, I, NCS), Th(NO₃)₄.2Benzqn, $Th(CIO₄)₄$. 6Benzqn, $ZrOX₂$. 4Benzqn, $(X = CI, Br, I, NCS)$, $ZrO(NO₃)$, . 2Benzqn, $ZrO(C1O_4)$, 6Benzqn, UO_2X_2 .4Benzqn (X = Cl, Br, I, NCS), $UO_2(NO_1)$, 2Benzqn and $UO₂(ClO₄)₂$ -6Benzqn are reported, together with their IR spectra, molar conductivity, molecular weights and TGA data. In all the complexes, Benzqn is bonded to metal via nitrogen.

INTRODUCTION

In recent years a number of workers have been interested in complexes with high coordination numbers $[1-7]$. For a metal ion to achieve a higher coordination number, two conditions are to be satisfied $[1-3]$; (a) an effective size of the metal ion, and (b) a high positive formal charge of the central metal atom. Zirconium(N), thorium(IV) and uranium(V1) with atomic radii of 1.45, 1.65 and 1.42 A, respectively, and a high positive charge fulfil the optimum conditions for high coordination. In view of the variations in stoichiometry from ligand to ligand $[4-8]$ observed for ZrO^{2+} , Th⁴⁺ and UO_2^{2+} complexes, it was considered worthwhile to study the complexes of these higher valent metal ions with 5,6-benzoquinoline (Benzqn).

EXPERIMENTAL

5,6-Benzoquinoline, purchased from E. Merck, was used without further purification. Lewis acids were obtained or prepared as reported previously **f&71.**

^{*} Author for correspondence.

Preparation of complexes

All the complexes were isolated by one of the following methods.

(a) In a typical experiment, an ethanolic solution of lewis acid was mixed with a slight excess of ligand. The reaction mixture was concentrated over a water bath. The concentrated mass was cooled, and an excess amount of diethyl ether was added, to give an oily viscous layer. The viscous layer was separated and washed thoroughly with ether. The viscous mass was dissolved in the minimum amount of absolute ethanol, an excess of diethyl ether was again added, and a precipitate was obtained. The precipitate was filtered, washed with small amounts of ethanol and ether, and dried in vacua over anhydrous $CaCl₂$.

(b) A solution of lewis acid in ethanol was treated with an excess of lewis base in the same solvent. The mixture was refluxed for ca. 3 h. After cooling the reaction mixture, a solid mass settled. This was filtered, washed with ethanol and ether, and dried as above.

The analyses and physical measurements of the complexes were made as discussed previously [6,7].

RESULTS AND DISCUSSION

The interaction of thorium(W) salts with Benzqn results in the formation of complexes of the type: ThX₄ · 4Benzqn (X = Cl, Br, I, NCS), Th(NO₃)₄ · 2Benzqn and $Th(ClO₄)₄$ 6Benzqn. Oxozirconium(IV) salts form the adducts $ZrOX$, 4Benzqn (X = Cl, Br, I, NCS), $ZrO(NO_3)$, 2Benzqn and $ZrO(ClO₄)₂ \cdot 6$ Benzqn, while the dioxouranium(VI) salts form the adduct with composite on UO_2X_2 4Benzqn (X = Cl, Br, I, NCS), $UO_2(NO_3)_2$. 2Benzqn and $UO_2(CIO_4)$, 6Benzqn.

The elemental analyses of these complexes are given in Tables 1-3. The complexes are thermally stable and can be stored for a long period at room temperature, except the iodide complexes which decompose to a sticky mass after a few weeks. The complexes are sufficiently soluble in common organic solvents.

The measurement of molar conductance in nitrobenzene (Tables $1-3$) reveals that all the halo and nitrato complexes are non-electrolytes. Oxozirconium(IV) and dioxouranium(V1) perchlorato complexes correspond to 1 : 2 electrolytes indicating the presense of both the perchlorate groups outside the coordination sphere. The molar conductance values of $Th(CIO₄)₄$. 6Benzqn and **ThI, .4Benzqn** correspond to 1 : 4 and 1 : 2 electrolytes, respectively.

The molecular weights of the complexes determined by cryoscopic method in nitrobenzene are given in Tables $1-3$. The results are in good agreement with the conductance data.

l,

TABLE 2

l,

of 5 6 henzooningline \sim OV \sim Analytical data of dio

TABLE 3

223

Infrared spectra

Detailed IR spectral data of the complexes reported in this paper are available from the authors. The spectra of 5,6-benzoquinoline and its complexes have been studied by various workers [9,10]. Singh [ll] has attempted to correlate the vibrational frequencies of quinoline with the equivalent vibrations of pyridine and has used a similar system of numbering the vibrational modes. The assignments to the IR absorption of 5,6-benzoquinoline and its complexes have been made on the basis of the work reported by Singh [ll] and others [8,9,12].

Seven bands attributed to $C=C$ and $C=N$ stretchings are ring vibrations occurring in the range $1610-1390$ cm⁻¹ in the spectra of free 5,6-benzoquinoline. Four absorptions in the same region (8a, 8b, 19a, 19b) have also been identified in the spectrum of the pyridine part. The additional bands in the ligand may thus be associated with the carbocyclic ring, as suggested by Shindo and Tamura [13]. On complexation these frequencies shifted to higher wavenumber, clearly indicating that the ligand is bonded with the metal through the hetero nitrogen atom (not listed).

Other important absorptions, i.e., C-H in-plane deformation, ring breathing and C-H out-of-plane deformations, also show positive shifts on complexation, further confirming the N-bonding. Upon complexation new bands appear in the region $400-350$ cm⁻¹ which are tentatively assigned to $\nu(M-N)$ modes [12,14].

In the perchlorato complexes the very strong ν_3 band and a strong ν_4 band appear in the 1090–1080 and 640–620 cm⁻¹ regions, respectivel indicating that tetrahedral symmetry of the perchlorate ion is maintained and it is not bonded to the metal ion [14,15]. In thiocyanate complexes the bands occur at 2080–2050 (ν C \equiv N), 860–830 (ν C–S) and 480–460 cm⁻¹ (δNCS) which are normally associated with the thermal N-bonded isothiocyanate ion [16,17].

In nitrato complexes the absence of the ν_3 band of ionic nitrate (D_{3h}) around 1360 cm⁻¹ and the occurrence of two bands at ca. 1500 (v_1) and 1300 cm⁻¹ (ν_4) clearly suggest the coordination of nitrate ions in these complexes. Further, the bands at ca. 1030 cm⁻¹ (ν ₂) ca. 820 cm⁻¹ (ν ₆) and 740 cm⁻¹ (v_3/v_5) reveal the bidentate nature of nitrate ions in these complexes [14,18-231.

The $(M-Cl)$ stretching vibrations occur in the 290-250 cm⁻¹ region [23-251 while the M-Br and M-I stretching vibrations could not be observed in the spectral range studied.

In conclusion, the coordination number (CN) of $Zr(IV)$ is 7, in thorium(IV), the CN varies from 6 to 10 depending upon the nature of anions. The CN of uranium in these complexes is 8.

 225

Thermal behaviour

Comparatively less is known about the thermal studies of aromatic amine complexes of metal ions [12,26-291. In the present studies, TGA of some representative complexes of 5,6-benzoquinoline with oxozirconium(IV) and thorium(IV) have been reported. The thermal results are summarized in Table 4.

Thermogravimetric curves indicate the absence of water of crystallization in the complexes and reveals their non-hygroscopic nature. For other similar amine complexes of the ZrO^{2+} ion, the deligation process of the complexes, ZrOX, \cdot 4Benzqn (X = Cl, Br, NCS), starts at ca. 165-175°C and is completed at 225 ± 5 °C. In this step only two ligand molecules are lost. At 280°C all the ligand molecules have been lost. Finally, at 585 \pm 5°C, ZrO, is obtained as end product. The TG curve of $ZrO(NO_1)$, \cdot 2Benzqn shows that both the ligand molecules are lost in the 190-305°C temperature range. At 570°C, ZrO₂ is obtained. The TG curve of $ZrO(C1O_4)$, \cdot 6Benzqn indicates that two molecule of ligands are lost at 280°C and a stable intermediate compound, $ZrO(CIO₄)$, \cdot 4Benzqn, is obtained. Finally, at 580°C, $ZrO₂$ is obtained as the end product.

The weight loss values observed in the thermal decomposition of ZrO^{2+} complexes correspond very closely with the general equations.

 $ZrOX_2 \cdot 4$ Benzqn $\rightarrow ZrOX_2 \cdot 2$ Benzqn $\rightarrow ZrOX_2 \rightarrow ZrO_2$

 $(X = CI, Br, NCS)$

 $ZrO(NO_3)$, \cdot 2Benzqn \rightarrow ZrO(NO₃), \rightarrow ZrO,

 $ZrO(CIO_4)$, \cdot 6Benzqn \rightarrow $ZrO(CIO_4)$, \cdot 4Benzqn \rightarrow ZrO_5

Similar to ZrO^{2+} complexes the TG curves of ThX₄ \cdot 4Benzqn (X = Cl, Br, NCS) show that the complexes are stable up to 185 ± 5 °C, beyond which decomposition starts and continues up to 235°C. Analysis of the thermogram shows that two molecules of ligand are lost at this stage. Further heating to 390°C causes the total loss of ligand molecules. At ca. 500 $^{\circ}$ C, oxohalide species mixed with some ThO₂ are obtained in all cases. Decomposition of Th $(NO_1)_4$ \cdot 2Benzqn is completed in these steps, while the TG curve of the perchlorato complex shows that the complex starts to decompose at 19O'C and continues up to 505"C, after which it corresponds to ThO,. From the pyrolysis curve it is also found that no stable intermediate perchlorate-Benzqn complexes have been formed.

The thermal stability of Th^{4+} complexes falls in the following order: $NO₃ > Cl > ClO₄ > NCS > Br.$

REFERENCES

- 1 S.J. Lippard, Progr. Inorg. Chem., 8 (1967) 109.
- E.L. Muetterties,H. Roesky and C.M. Wright, J. Am. Chem. Sot., 88 (1966) 4856.
- D. Brown, Halides of Lanthanides and Actinides, Wiley, London, 1968.
- K.W. Bagnall, Coord. Chem. Rev., 2 (1967) 145.
- L. Cattalini, U. Croatto, S. Degetto and E. Tondello, Inorg. Chim. Acta, Rev., 5 (1971) 19.
- R.K. AgarwaI, Ph.D. Thesis, Meerut University, 1979.
- A.K. Srivastava, S. Sharma and R.K. Agarwal, Inorg. Chim. Acta, 61 (1982) 235.
- K.W. BagnaIl, The Actinide Elements, Elsevier, Amsterdam, 1972 and references therein.
- S.A.A. Zaidi, K.S. Siddiqi and N.S. Neelam, Indian J. Chem., 14A (1976) 209.
- R. Sir@, Spectrochim. Acta, Part A, 38A (1982) 1017.
- S.S. Sir@, Z. Anorg. Allg. Chem., 384 (1971) 81.
- N. Bhakru, Ph.D. Thesis, Lucknow University, 1973.
- H. Shindo and S. Tamura, Pharm. Bull. (Jpn.), 4 (1956) 292.
- A.K. Srivastava, M. Srivastava and R.K. Agarwal, Croat. Chem. Acta, 55 (1982) 429.
- S.K. Madan and A.M. Donohue, J. Inorg. Nucl. Chem., 28 (1966) 1303.
- J.L. Burmeister, Coord. Chem. Rev., 1 (1966) 205; 3 (1968) 225.
- J.R. Chopra, A.N. Pandey, S.P. Sharma and R.K. Agarwal, Croat. Chem. Acta, 55 (1982) 283.
- 18 B.M. Gatehouse, S.E. Livingstone and R.S. Nyholm, J. Chem. Soc., (1957) 4222.
- J.R. Ferraro and A. Walker, J. Chem. Phys., 45 (1966) 550.
- J.C. Taylor, M.H. Mueller and R.L. Hitterman, Acta Crystallogr., 20 (1966) 842.
- G. Topping, Spectrochim. Acta, 21 (1965) 1743.
- J.I. Bullock, J. Inorg. Nucl. Chem., 29 (1967) 2257.
- P.J. Alvey, K.W. Bagnall, D. Brown, and J. Edward, J. Chem. Sot., Dalton Trans., (1973) 2308.
- R.K. Agarwal, V. Kapur, S. Sharma, P.C. Jain and A.K. Srivastava, Transition Met. Chem., 5 (1980) 237.
- P.P. Singh and I.M. Pandey, J. Inorg. Nucl. Chem., 34 (1972) 1131.
- A.K. Mazumdar, A.K. Mukeji and A.K. Mukheji, J. Inorg. Nucl. Chem., 26 (1964) 2177.
- J.P. Allen, D.H. NuttaI and D.S.A. Sharp, J. Inorg. Nucl. Chem., 27 (1965) 1865.
- J.P. Allen, D.H. NuttaI and D.S.A. Sharp, J. Chem. Sot., (1966) 1031.
- 29 R.K. Agarwal, B.S. Tyagi, M. Srivastava and A.K. Srivastava, Thermochim. Acta, 61 (1983) 241.